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Figure 1: Simple mesh object (left), converted to Vector Line representation using Mesh-To-Line tool (center), stress-test of
Mesh-To-Line on a complex mesh (right)

ABSTRACT
This paper introduces Mesh-to-Line, a vectorization tool designed
to convert 3D meshes into vector line representations. The tool
integrates several algorithms for Silhouette Edge Detection, Crease
Edge Detection, and Bézier curve interpolation to create smooth
and visually accurate representations. This paper analyzes several
algorithmic approaches, challenges with noisy or complex meshes,
and potential optimizations for performance and scalability. Down-
stream applications include recreating retro aesthetics, generating
cartoon-like visuals, and supporting vector-style art in real-time
rendering.
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1 INTRODUCTION
In recent years, there has a been a keen interest in game develop-
ment and research to recreate retro aesthetics. Projects such as B99,
Ark-Ade, Holoball, and Immersive Archive [8] are among many
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which attempt to recreate a vector-inspired visual style. Despite this
interest, there remains a research gap in modern authoring tools
for creating vector line graphics in a practical manner. Though it
is technically possible to manually draw vector lines in a modern
game engine, it is often an unscalable and time-intensive process. To
address this gap, we created Mesh-to-Line, a generalized method for
vectorizing meshes which integrates into modern 3D mesh-based
pipelines. It empowers creatives and developers to automatically
generate vector line graphics from meshes and without the need
for manually specified vertices with the added benefit of being able
to recreate other line-based art styles such as cel-shading.

2 RELATEDWORKS
2.1 Intuitive Approaches
Beginning with an intuitive approach, one might believe a thinly
dimensioned mesh to be an appropriate approximation of a vector
line. However, the pitfall of this approach is that meshes will ap-
pear thicker/thinner across varying depths whereas vector lines
will maintain a uniform dimension. This is illustrated in Figure 9
where meshes closer to the camera appear thicker such as those
in the center. Furthermore, it is still very time-intensive to have
to manually 3D model objects by what is effectively inserting one
rectangular prism for each edge of a mesh.

Moving towards working with actual vector graphics, Schmidt
Workshops describes a brute-force method of converting meshes
into vector lines by simply iterating through all the vertices and
drawing lines between them [9]. However, this approach is far from
complete, often resulting in hidden lines being rendered or impor-
tant lines missing altogether. This makes sense as this approach
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blindly renders edges without taking into account the relationship
between each vertex.

2.2 Algorithmic Approaches
Several algorithms exist to selectively render important edges in a
mesh. Hertzmann [7] describes the two most important edge types
for polygonal meshes: silhouette edges and crease edges. Silhouette
edges are defined as edges which connect back-facing polygons to
front-facing polygons whereas crease edges are any discontinuities
in an otherwise smooth surface. Finally, we represent curves in
meshes through the use of bézier curves. We dive into the specifics
of our implementation of these algorithms in our Methodologies
section.

Silhouette Edge Detection (SED). Buchannan and Sousa’s
so-called "Edge Buffer" algorithm [2] iterates over polygons in a
mesh to check for silhouette edges. We chose to base our SED
implementation on this algorithm for its efficient design suitable
for realtime processing by utilizing fast XOR operations. It analyzes
all edges that comprise the outermost planes of a starting mesh.
If an edge connects a front-facing and back-facing triangle, it is
considered a silhouette edge.

Crease Edge Detection (CED). For potentially noisy meshes, it
may be necessary to perform CED to detect important edges such
as folds, corners, and edges that may have rapid geometric changes.
The foundational Normal Vector Voting algorithm introduced by
Page et al. [10] is a robust option for this purpose. It works by
comparing the normal vectors across a local region of the mesh
to identify significant features based on deviations between the
normals.

Bézier curves. It may be difficult to represent certain meshes
with curves using purely lines. The de Casteljau Algorithm [1]
is an algorithm which lays the groundwork for producing bézier
by linearly interpolating between control points. We choose this
algorithm for its stability and ease of implementation.

3 METHODOLOGY
We build a mesh’s "vectorization" by drawing lines that represent
its silhouette and crease edges, and then use Bezier curves to prop-
erly represent curvature. The methods described are potentially
generalizable to any modern mesh pipeline. Here, we leverage the
Unity game engine [14] for its flexibility and extensibility in down-
stream applications. The Unity APIs used include the Unity base
API for accessing mesh information (vertices, transforms, etc.) and
the Graphics Library (GL) API for making low-level graphics library
calls for drawing vector lines.

3.1 Silhouette Edge Detection
Mathematically, a silhouette edge for a polygonal model can be
detected using three principles as specified by Hartner et al. [6] so
long as the normals of the input polygon face outward from the
surface:

• A polygon is front-facing if the dot product of the normal
and eye vector is less than 0.

• A polygon is back-facing if the dot product of the normal
and eye vector is greater than 0.

• A polygon is perpendicular to the view direction if the dot
product of the normal and eye vector is equal to 0.

The main process of Edge Buffer SED is to check each edge in
the mesh using the following steps:

• Get the triangles that contain the edge’s vertices
• Compare the eye vector against the triangle normals to clas-
sify triangles as front-facing or back-facing

• Check if the list of triangles contains both front-facing and
back-facing triangles

If the edge connects front-facing and back-facing triangles, it
is a silhouette edge. Also, to ensure that edges are not processed
multiple times per frame, we maintain a hash set of the already-
processed edges.

Figure 2: Silhouette rendered from silhouette edge detection
algorithm. Missing some edges due to low-poly mesh, not
enough edges to represent a perfect silhouette.

The outcome of running this algorithm alone is shown in Figure 2.
A perfect silhouette depends on the complexity of the mesh, where
the existing edges on the mesh determine the silhouette drawn.
Therefore, more edges available to work with allow for a more ac-
curate representation of a silhouette without breaks/discontinuous
edge connections.

3.2 Crease Edge Detection
With more complex meshes, SED alone causes outputs to appear
oversimplified. For instance, in Figure 3, because certain facial fea-
tures such as the eyes, nose, and mouth don’t lie on the outermost
planes of the mesh, they are not shown at all by our SED imple-
mentation. So, in these cases we perform CED using Normal Vector
Voting to retain more of the essence of the original mesh in its
vectorization.

The Normal Vector Voting algorithm involves tensor-based anal-
ysis. The algorithm begins by initializing the voting tensors for
each vertex in the mesh. These tensors are 4x4 matrices that encode
information about the local surface orientation. We firstly initialize
a zero tensor for each vertex to prepare for the upcoming process.
The entire process consists of several iterations:

• For each vertex, we create tensor vote based on the face
normals of the adjacent triangles

• These votes are weighted according to spatial relationships
between vertices

• The accumulated votes form a tensor field that codes local
surface structure

• Confidence measures are computed from eigenvalue analysis
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Figure 3: The silhouette edges of a statue mesh drawn by
themselves on the left, and then in combination with the
crease edges on the right. Used contour styling to depict a
roman statue [5] with an unlit shader material (removes
shadows on the 3D model).

The process for a number of iterations that is configurable to
refine the results.

After the voting process, we use the following to determine if
an edge is a crease:

• The angle between vertex normals on either side of the edge
• Confidence values derived from the tensor voring
• The edge’s alignment with primary coordinate axes

As for the confidence calculation, we use eigenvalue analysis
of the accumulated tensors to determine the reliability of edge
classifications. This involves:

• Calculate the dominant eigenvalue through power iteration
• Analyzing the relationship between the primary and the
secondary eigenvalues

• Use this information to establish confidence in edge classifi-
cation decisions

In order to achieve the ’retro-style’ look, edges will only be ren-
dered if they meet both the crease detection criteria and alignment
constraints.We check for alignment to ensure that only edges which
are predominantly aligned with main coordinate axes are rendered,
thereby avoiding the lines which would not fit to the classic vector
graphic style. The following figure is the outcome of applying the
crease edge detection algorithm + the existing silhouette edges:

3.3 Bézier Curves
Simply combining SED and CEDmay not represent rounded shapes
well. In these cases, we create Bézier curves, using the de Castel-
jau’s algorithm [1]. Our implementation checks every pair of edges
within the collection of SED and CED edges and determines if the
edges are curved based on the delta of the angle between them. If
it falls within a significant range between 110-175 degrees, the two
edge pairs are considered curved. To form a unison curvature for
both edges, the curvature is assumed to be a line with 3 vertices,
a combination of both edges. If instead we assigned a curvature
individually to both edges, this would cause unnatural behavior of
curvatures, not accurately representing the curvature of the mesh.
Therefore, having a 3-vertex line is a more accurate way to depict

Figure 4: Crease edges drawn on top of existing silhouette
edges from SED applied before.

curvature within the mesh, by having the outer vertices as the
anchor points of the Bézier curve, and the curvature of the line
must pass through the center vertex, the vertex that connected
both edges. Also, the curvature must be along the plane of the two
edges, to prevent cases where curvature extends away from the
original line edge. Therefore, this gives us curves for edges along
the crease and silhouette edges where it falls within the mentioned
angle range. The following figure (Figure 5) depicts the outcome of
applying Bézier curves to the line representation.

Figure 5: Left image: The spaceship’s right wing rendered
solely with straight lines. Right image: The same wing after
applying Bézier curves for smoother, more elegant contours.

A downside to this implementation is that curves are applied to
all edge pairs that fall within the indicated angle range. Therefore,
corners that fall within this range but are not supposed to have a
curved edge are also included as a curved edge within our mesh-to-
line process. As a result, a perfectly accurate depiction of the mesh
is not always reflected by our tool in these cases.

4 DISCUSSION
4.1 Simple Meshes
Initial testing of our vectorization tool yielded promising results. A
simplified representation of the starting mesh was achieved, while
obtaining the unique aspects of vector graphics such as scalability
(no pixelization as the camera approaches object). We found that
in all cases silhouette edges are necessary for rendering a complete
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Figure 6: Simple mesh conversion of a palm tree model illus-
trating complete silhouette and crease edge detection

vector line representation of a mesh. We also found that only SED
was necessary when applied to primitives and simple low-poly
meshes such as a BattleZone Tank model [3] in Figure 1, though
CED was necessary for slightly more complex models such as the
palm tree [13] in Figure 6.

Silhouette edges depend on the complexity of the mesh; the less
complexity the mesh has, the less accurate the silhouette line rep-
resentation is rendered. Therefore, in cases where the mesh is a
low-poly 3D model, the SED provides an incomplete silhouette, as
seen in 2. However, applying CED makes up for the edges missing
from the silhouette, outputting the expected simple line represen-
tation of the mesh without including all edges within the mesh, as
seen in 6 and 4. In addition to accuracy, the real-time performance
of Mesh-To-Line for these low-poly models is adequate, with negli-
gible impact to computational load, according to Unity’s internal
performance profiler 10. Including Bézier curves, this reduces per-
formance even more due to the addition of line segments for each
line changed to a curved representation.

4.2 Stress-Testing

Figure 7: Advanced mesh conversion of a Tesla Cyber Truck
model with a much higher poly-count

To stress-test our system further, we applied it to vastly more
complex models in the range of tens of thousands of triangles

including a Tesla Cyber Truck [11] (Figure 7), an X-Wing fighter
[12] (Figure 1), and a Roman statue [5] (Figure 3). Compared to
simple 3Dmodels, a more accurate silhouette is generated. However,
extraneous edges are included due to the complexity of our mesh;
however, this does not take away from the final outcome when
applying the CED which adds crease edges to the line render to get
the final expected result.

In the matter of performance, it takes a noticeable hit due to
lines rendered and deleted every frame in real-time. Inclusion of
Bézier curves, similar to low-poly meshes, reduces performance
even more due to added complexity of the line render. Therefore,
in the matter of using this application of algorithms to produce
line representations of the mesh, the more 3D models in the scene,
the more it impacts the performance by a substantial amount. This
method must be optimized or paired with another method to be
viable, if used in real-time, like a video game created within the
Unity engine.

4.3 Optimizations
To reduce the workload with the current implementation, we could
further improve the tool by pairing it with other tools, such as
Unity’s Shader tool, and by optimizing the CED and SED scripts.

When optimizing the existing CED and SED scripts, we can
limit the number of lines rendered each frame to a certain amount.
We could also implement a Level of Detail (LOD) system based
on the distance from the camera: if the 3D model is closer to the
camera, more lines are rendered; the farther the model is from the
camera, the fewer lines are rendered. Additionally, we could include
depth culling for each individual mesh to remove unnecessary lines;
however, this depends on the chosen style for the scene, as depth
culling is not necessary when adopting the "retro" style depicted in
[11] (Figure 7).

By incorporating other tools like Unity’s Shader tool alongside
scripting, we can optimize this process even further. Applying
a shader to a mesh using a material allows for a more accurate
depiction of the 3D model’s silhouette, where the complexity of the
mesh does not considerably affect the generated silhouette. One
such method to extract the silhouette of a mesh is using a Sobel
filter, where silhouette extraction is performed at the pixel level
based on the camera’s perspective. However, this may reduce the
amount of control over the styling of rendered lines in exchange
for better performance. Since the Sobel filter produces a texture
representation of the silhouette, it cannot be used directly with our
vectorization tool, complicating the production of a vector graphic
(via an SVG file) of the 3D model. Therefore, while using shaders
may yield better results and performance in some instances, they
are limited in styling individual lines or producing a vector graphic
representation of the 3D render.

Our implementation works directly with the mesh data and
does not generate vertices or edges that do not exist, which may
occur when using a shader alongside our script. In summary, we
are trading performance for quality depending on the complexity
of the 3D mesh. This method must be optimized or paired with
another approach to be viable for real-time applications, such as
video games created within the Unity engine.
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4.4 Broad Applications
Although the focus and inspiration of the project are the "retro"
styles depicted in the above figures, such as Figure 7, our project
can be applied more broadly since silhouette and crease edges are
used in various styles. For instance, cartoon and animated styles
use silhouettes a lot to bring the focus of characters and items
within the scene to the foreground. For simple styles, crease edges
are not needed. For example, in Figure 8, only SED is used to pro-
duce silhouettes of the objects within the scene, creating a simpler
cartoon-style look from a low-poly scene [4].

Figure 8: Depicts a toon-style rendering of a camp scene
using only silhouette edges around objects within the scene.
A shaderwas applied to all objectswithin the scene, removing
shadows and applying uniform coloring.

We can also represent 2D art styles in a 3D representation using
our line rendering tool, such as contour depictions of complex
meshes, shown in Figure 3. Silhouette edges are used to define the
outline of the 3D model, while crease edges are used to add more
detail in the statues face to make it more recognizable.

Thus, our project can be broadly applied since silhouette repre-
sentations, both linear and curved lines, of characters and objects
within a scene are utilized in many forms of media (video game
graphics, 2D/3D animations, and 2D art), with the addition of crease
edges to add more detail to the line representation.
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A APPENDIX

Figure 9: Comparison of true vector lines (left) to meshes
(right) which appear thicker/thinner at varying depths

Figure 10: Unity performance profiler showing minimal per-
formance impact when processing the BattleZone mesh,
maintaining close to 200 FPS
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